Microbial Diversity in Engineered Haloalkaline Environments Shaped by Shared Geochemical Drivers Observed in Natural Analogues.
نویسندگان
چکیده
Microbial communities in engineered terrestrial haloalkaline environments have been poorly characterized relative to their natural counterparts and are geologically recent in formation, offering opportunities to explore microbial diversity and assembly in dynamic, geochemically comparable contexts. In this study, the microbial community structure and geochemical characteristics of three geographically dispersed bauxite residue environments along a remediation gradient were assessed and subsequently compared with other engineered and natural haloalkaline systems. In bauxite residues, bacterial communities were similar at the phylum level (dominated by Proteobacteria and Firmicutes) to those found in soda lakes, oil sands tailings, and nuclear wastes; however, they differed at lower taxonomic levels, with only 23% of operational taxonomic units (OTUs) shared with other haloalkaline environments. Although being less diverse than natural analogues, bauxite residue harbored substantial novel bacterial taxa, with 90% of OTUs nonmatchable to cultured representative sequences. Fungal communities were dominated by Ascomycota and Basidiomycota, consistent with previous studies of hypersaline environments, and also harbored substantial novel (73% of OTUs) taxa. In bauxite residues, community structure was clearly linked to geochemical and physical environmental parameters, with 84% of variation in bacterial and 73% of variation in fungal community structures explained by environmental parameters. The major driver of bacterial community structure (salinity) was consistent across natural and engineered environments; however, drivers differed for fungal community structure between natural (pH) and engineered (total alkalinity) environments. This study demonstrates that both engineered and natural terrestrial haloalkaline environments host substantial repositories of microbial diversity, which are strongly shaped by geochemical drivers.
منابع مشابه
Human and Environmental Impacts on River Sediment Microbial Communities
Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA...
متن کاملEcology and industrial microbiology: Microbial diversity - sustaining the Earth and industry.
Larry’s research focuses on biocatalysis and biodegradation. Laboratory studies are centered on microbial catabolic enzymes; complementary informatics projects revolve around the University of Minnesota Biocatalysis/Biodegradation Database, http://umbbd.ahc.umn.edu/ index.html. Industrial microbiology exploits the ecological adaptations that microorganisms have developed to communicate with and...
متن کاملDiversity and geochemical structuring of bacterial communities along a salinity gradient in a carbonate aquifer subject to seawater intrusion.
In aquifers subject to saline water intrusion, the mixing zone between freshwater and saltwater displays strong physico-chemical gradients. Although the microbial component of these specific environments has been largely disregarded, the contribution of micro-organisms to biogeochemical reactions impacting water geochemistry has previously been conjectured. The objective of this study was to ch...
متن کاملMicrobiome composition and geochemical characteristics of deep subsurface high-pressure environment, Pyhäsalmi mine Finland
Pyhäsalmi mine in central Finland provides an excellent opportunity to study microbial and geochemical processes in a deep subsurface crystalline rock environment through near-vertical drill holes that reach to a depth of more than two kilometers below the surface. However, microbial sampling was challenging in this high-pressure environment. Nucleic acid yields obtained were extremely low when...
متن کاملThe Value and Significance of Metagenomics of Marine Environments
Microbes have played a fundamental role in the natural history of our planet, and have done so for billions of years. They have adapted to Earth’s many environments from the mild to the very extreme. Studying their diversity and their way of life is critical for understanding their full impact on the global ecology. Although the field of metagenomics is still young, it has unravelled a wider mi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Applied and environmental microbiology
دوره 81 15 شماره
صفحات -
تاریخ انتشار 2015